• IMA sites
  • IMAJ services
  • IMA journals
  • Follow us
  • Alternate Text Alternate Text
עמוד בית
Sat, 18.05.24

Search results


October 2015
Nadav Sarid MD, Sigi Kay PhD, Avital Angel MD, Luba Trakhtenbrot PhD , Odelia Amit MD, Yair Herishanu MD and Chava Perry MD PhD
June 2010
A. Yosepovich, C. Avivi, J. Bar, S. Polak-Charcon, C. Mardoukh and I. Barshack

Background: HER2 is an important prognostic and predictive marker in invasive breast cancer. It is currently assessed by immunohistochemistry for protein over-expression and by fluorescence in situ hybridization for gene amplification. The immunohistochemistry-equivocal cases (2+) are currently retested by FISH[1] to determine eligibility for trastuzumab treatment. Retesting by FISH significantly raises the cost of patient management and sometimes delays treatment. The 4B5 is a new, FDA-approved, rabbit monoclonal antibody for HER2 testing.

Objectives: To examine the reliability of 4B5 IHC[2] HER2 testing in cases found to be HER2 status equivocal by CB11 IHC.

Methods: Twenty-eight invasive breast cancer cases, with an equivocal HER2 status by CB11 IHC, were retested by the 4B5 antibody as well as by FISH analysis. The scoring was performed using the same guidelines as HercepTest and was correlated with the FISH ratio. Results: Of the original 28 CB11 clone designated equivocal cases, 14 (50%) showed negative HER2 staining using the 4B5 clone (HercepTest score 0 and 1+). Five cases (18%) proved to be positive (HercepTest score 3+) and 9 cases (32%) remained equivocal (HercepTest score 2+). The corresponding FISH ratio results showed that all 4B5 negative cases were negative by FISH testing, with a negative predictive value of 100% 4 of 5 of the 4B5-positive cases were positive by FISH testing, with a positive predictive value of 80%. One 4B5-positive case was borderline-high (2.2 ratio) by FISH. The correlation between 4B5 IHC and FISH was statistically significant (P = 0.0013) by chi-square test.

Conclusions: Sequential testing by 4B5 IHC could greatly reduce the need for FISH testing in cases considered HER2 equivocal by CB11 IHC.

 

 
[1] FISH = fluorescence in situ hybridization

[2] IHC = immunohistochemistry

September 2002
Aliza Amiel, PhD, Orit Reish, MD, Elena Gaber, PhD, Ronit Masterman, MD, Tally Tohami, MSc and Moshe D. Fejgin, MD

Background: While most allelic pairs of DNA replicate synchronously during the S phase of the cell cycle, some genes normally replicate asynchronously, i.e., genes on the X chromosome and imprinted genes. The replication control mechanism is unknown but was shown to be impaired in malignancies and chromosomal trisomies where replication pattern becomes asynchronous.

Objectives: To determine the level of asynchronization in replication timing of cells from patients with microdeleted genomes.

Methods: We applied monocolor fluorescent in situ hybridization with different probes on leukocytes from microdeleted genomes.

Results: All samples derived from the microdeleted genomes showed significantly higher levels of an asynchronized pattern compared to normal individuals.

Conclusions: Even a “small” genetic imbalance (microdeletion) can interfere with gene replication and cell cycle progression, as previously shown in full trisomies.
 

Legal Disclaimer: The information contained in this website is provided for informational purposes only, and should not be construed as legal or medical advice on any matter.
The IMA is not responsible for and expressly disclaims liability for damages of any kind arising from the use of or reliance on information contained within the site.
© All rights to information on this site are reserved and are the property of the Israeli Medical Association. Privacy policy

2 Twin Towers, 35 Jabotinsky, POB 4292, Ramat Gan 5251108 Israel